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MOLECULAR DYNAMICS 
AS A MATHEMATICAL MAPPING. 

11. PARTIAL DERIVATIVES 
IN THE MICROCANONICAL ENSEMBLE 
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Performing molecular dynamics in a fully continuous and differentiable framework can be 
viewed as a deterministic mathematical mapping between, on one side, the force field 
parameters that describe the potential energy interactions and input macroscopic conditions, 
and, on the other, the calculated corresponding macroscopic properties of the bulk molecular 
system. 

Within this framework, it is possible to apply standard methods of variational calculus for the 
computation of the partial derivatives of the molecular dynamics mapping based on the 
integration of either the adjoint equations or the sensitivity equations of the classical Newtonian 
equations of motion. We present procedures for these computations in the standard 
microcanonical ( N ,  V ,  E )  ensemble, and compare the computational efficiency of the two 
approaches. The general formulations developed are applied to the specific example of bulk 
ethane fluid. 

With these procedures in place, it is now possible to compute the partial derivatives of any 
property determined by molecular dynamics with respect to any input property and any 
potential parameter. Moreover, these derivatives are computed to essentially the same level of 
numerical accuracy as the output properties themselves. 
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1. INTRODUCTION 

Molecular dynamics solves the Newtonian equations of motion for a system 
of N interacting particles given by: 

r i = v i  V i =  1 ,  . . . ,  N (1) 

subject to the initial conditions: 

v(0) = vO(a) (4) 

where vectors r E R3N and V E  R3N denote the particle positions and 
velocities respectively,' Fi  is the total force exerted on particle i and mi is 
the mass of particle i. The vector (Y denotes a set of constant parameters 
comprising the parameters d that characterize the interparticle potential 
U(r, 29) and/or other quantities q that are directly related to macroscopic 
input quantities (e.g., the specified system density and energy). 

As shown in part I of this paper [l], the total force exerted on particle i 
in a direction y E {x, y ,  z } can be expressed as: 

The first term on the right hand side of the above expression describes non- 
bonded interactions between particle i and all other particlesj. Here X,, Y,, 
Z,, denote normalized interparticle distances, e.g., X u  = (xi-xi)/L where L 

'Throughout this paper, bold subscripted lower case symbols (e.g., rr)  will denote vectors 
of length 3 referring to a specific particle. Bold unsubscripted lower case symbols (e .g . ,  r) 
will denote vectors of length 3N of the form rT = (r:, r:, . . . , r i ) .  Bold doubly superscripted 
upper case symbols (e .g . ,  M"") will denote 3 x 3 matrices referring to a specific pair of particles 
i and j .  
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is the reference box size. FTy is the modified force function [l] given by: 

V(X, Y ,  Z) E R3 \HI3] (6) 

and similarly for FY(.) and .F'"(.). The normalized interparticle distance 
R k k l v i  is given by: 

Rkk!kr! E d ( x  - k)2  + ( Y  - k')2 f (z - k")2 (7) 

The potential function UNB (R) represents non-bonded interactions between 
pairs of particles at a normalized distance R apart. We note that UNB is 
also a function of the potential parameters GNB and, as a result of normal- 
ization, of the reference box size, L (and consequently the density, p 2 ) .  
Consequently, the force (6) is also a function of these parameters. All these 
dependences can clearly be seen in the example of the standard 6-  12 
Lennard - Jones potential, for which: 

(8) 
dUNB 24kb &u6 1 

dR - ~6 g[2(&)6-1] 

where 19NB = { E ,  u}. 
The second term on the right hand side of Eq. (5) is a bond correction 

function that accounts for the fact that, in reality, the interactions of particle 
i with a subset Bi of the other particles in the system are due to the existence 
of chemical bonds. This correction is given by: 

AFf>y(ri; r j , j E  Bi, 8,") = FF>y(ri; r j , j  E Bi, 19,") 

where 29;. represents 
bonded interactions, 

a set of parameters that describes a category 
i.e., a collection of various forms of bonded 

actions (such as stretching, bending, torsion) in which particle i 
volved. Also, FB,? = - aUNBj8y. 

(9) 

T i  Of  

inter- 
is in- 

2Note that p =  N,,,M,/"A L3 where N ,  is the number of molecules under consideration, M ,  is 
the molecular weight and NA is Avogadro's constant. 
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As will be explained in detail in Section 4, the initial conditions of the 

Most macroscopic properties p of interest determined by molecular dy- 
system ( 3 )  - (4) are generally also functions of a. 

namics computations involve time-integral expressions of the form: 

where t, is some final time and cp is a continuous and differentiable function 
of the positions r, the velocities v and the parameters a. For example, the 
computation of the system temperature and pressure involves the following 
functions cpT and c p p  respectively [2]: 

l N  
(PP = -x(mivTvi  3L3 + rTFi(r, a ) )  

I =  1 

where kb is Boltzmann's constant. 
Equations (1) - (4) describe an initial value problem which, given 

values of the parameters a, can be solved to determine r(t) and v(t) for 
tc[O, +I. This then allows the computation of the quantity p via Eq. (10). 
Thus, p is solely a function of a, as indicated on the left hand side of 
Eq. (10). 

This paper is concerned with the computation of the partial derivatives 
dp /da  for the case of molecular dynamics calculations in the microcanoni- 
cal ensemble, i.e., for specified system energy E and density p(q -  (E, p} ) .  
In Sections 2 and 3 ,  we present two general alternative approaches for 
achieving this via variational calculus techniques involving the solution of, 
respectively, the adjoint and the sensitivity equations of the Newtonian 
system (1)-(4). Section 4 considers the partial derivatives of the initial 
particle positions and velocities with respect to the parameters a; these 
quantities are needed for the computation of d p / d a  by both the adjoint 
and the sensitivity formulations. Section 5 compares the computational 
characteristics of these two approaches. Section 6 applies our general 
formulations to the computation of partial derivatives for the systems of 
flexible ethane molecules, and presents the results of some numerical ex- 
periments performed in order to test our formulations. 
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2. PARTIAL DERIVATIVES VIA THE ADJOINT SYSTEM 

One way of obtaining the partial derivatives of a function defined in terms of 
the solution of a set of ordinary differential equations (ODES) is via the 
solution of the so-called adjoint system [3]. In order to introduce the basic 
concepts, we consider first the general system of n ordinary differential 
equations: 

x = f ( x ,  a)  (13) 

subject to the initial conditions: 

x ( 0 )  = xO(a) (14) 

Here, x is a vector of length n that depends on both time t and the 
parameters a. The latter are a vector of length N,. 

Now consider a quantity @*(a) defined as: 

We note that @* is solely a function of a since specifying the values of 
a allows the solution of the ODE system (13) subject to initial conditions 
(14). Provided that the functionsf(x, a), xo(a) and @(x, a)  are continuous 
and differentiable, we can define the so-called "adjoint" set of ordinary 
differential equations: 

subject to the final time conditions: 

A(+)  = 0; X " ( t f )  = 0 (18) 

Here, X and A" are vectors of length n and N ,  respectively. The above 
adjoint system is useful primarily because it can be shown that [3] the partial 
derivatives of @* with respect to a are given by: 

axo (g-y = ( aoi) X(0) + Xyo) 
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2.1. Adjoint System of Newtonian Equations of Motion 

If we apply the general equations (16), (17) to the equations of motion 
(1)-(4) and (lo), we obtain the following adjoint system: 

T 
' V  
hi = - A : -  ($) vi= 1, ...,iv 

where A l ( t ) ,  hr(t) E R3, iE 1, .  . . , N represent N vectors of adjoint variables 
corresponding to Eqs. (1) - (2) respectively, and A"(t) is an additional 
variable for each parameter a under c~nsideration.~ Also, the symbol M'j." 
represents a 3 x 3 matrix of the form: 

The above set of equations is subject to the final time conditions (cf. 
Eq. (18)): 

X l ( t f )  = hY(tf) = 0; X"(tf) = 0 (24) 

Finally, by applying Eq. (19) to the specific case under consideration, we 
can see that the partial derivatives are determined from: 

ap dff = ($ ) TXr(0) + (g ) h"(0) + X*(O) 

31n the interests of notational simplicity, here we prefer to formulate the equations for the 
case of a single parameter a and a single property p .  For the multiparametric case, Eqs. (22), 
(24), (25)  have to be written separately for each parameter a. Moreover, for the case of multiple 
properties p ,  Eqs. (20)-(22) and (25) have to be written separately for each property. 
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2.2. Integration of the Adjoint System 

The integration of the adjoint system (20) - (22) involves evaluation of 
several quantities (namely M(j*'), dp/dri ,  &/hi, dFj/da and dp/da) ,  all of 
which are functions of particle positions r(t), velocities v(t)  and parameters 
a. It is, therefore, necessary to know r ( t )  and v( t )  VtE[O, q] for the 
integration of the adjoint system. Moreover, although the adjoint system is 
a set of ODES, it is subject to jinal (rather than initial) conditions, and 
therefore it has to be integrated backwards from t = q to t = 0. Hence, the 
following algorithm is employed to determine the gradients dp/da:  

1. Perform a molecular dynamics simulation from time t = 0 to time t = q. 
2. Starting from the end system configuration ( i e . ,  r(tf) and v ( q ) )  at time q, 

integrate the adjoint system of Eqs. (20)-(22) together with the original 
Newton's equations of motion (1)- (2) from time t = q to t = 0. 

3. Use the values of A', X" and A" at t = 0 to obtain the required gradients 
ap /da  from Eq. (25). 

In practice, we are interested in the time-averaged values of the 
instantaneous system properties which are calculated after an initial 
equilibration period has been completed. Thus, time averaging is performed 
only during a final part of length T of the total time horizon 9, and the 
property of interest p can be expressed as ( c j  Eq. (1 0)): 

To compute the partial derivatives of the quantity p ,  we express Eq. (26) as: 

where: 

and: 

t,--7 

i = 1 p(r, v ,  a)dt  (29) 

We can then solve the adjoint systems corresponding to p and p .  Of 
course, both of these adjoint systems are of exactly the same form ( i e . ,  
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Forward simulation 

Backward simulations 

FIGURE 1 Adjoint calculation of partial derivatives of time-averaged quantities. 

Eqs. (20) - (22)), but the first one is subject to the final conditions: 
ZV ZCI 

A ( t f )  = A ( t f )  = 0;  X ( t f )  = 0 (30) 

while the second adjoint system is subject to: 

Z(tf - r )  = A"(tf - r )  = 0; r ( t f  - T )  = 0 (31) 

Hence we need two backward integrations, one starting from +and another 
from t = tf - 7, as illustrated in Figure 1. 

The values of A'(O), X"(0) X"(0) that need to be used in Eq. (25) to 
determine the partial derivatives dp/da of the time-averaged properties are 
then given by: 

) Xa(0) =-  X (0) - T ( 0 )  
7 '(=" 

3. PARTIAL DERIVATIVES VIA THE SENSITIVITY 
EQUATIONS 

(33) 

(34) 

An alternative approach to the computation of the partial derivatives dp/aa 
is provided by the solution of the sensitivity equations. Again assuming 
continuity and differentiability of the functionsf(.), xo(.) and a(.), these can 
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be derived simply by differentiating Eqs. (1) - (4) with respect to parameters 
a to obtain: 

ri,a = ~ i , ~  Vi = 1 , .  . . , N  (35) 

subject to the initial conditions: 

avo 
v ~ , ~ ( O )  = 2 da 

V i  = 1 , .  . . , N 

Here, we have introduced the following notation: 

dri hi 
da aa q a ( t )  = - ( t )  and ~ ~ , ~ ( ( t )  =: - ( z )  

The sensitivity equations ( 3 9 ,  (36) form a set of ODES that can be 
integrated simultaneously with the original equations (l), (2) to obtain the 
sensitivities ri,Jt) and vi,,(t) for t E [0, tf]. 

By also differentiating Eq. (10) with respect to a, we obtain an expression 
for the required partial derivatives: 

The integral in Eq. (39) can be evaluated simultaneously with the solution of 
( 3 3 ,  (36) in the forward direction from t = 0 to t = 9. In practice, it is often 
more convenient to define an additional ODE: 

subject to the initial condition: 

P(0) = 0 

Thus, ~ ( t )  is equal to the integral of the right hand side of (40) from the 
initial time t = 0 to time t .  Hence, the required gradient is simply the final 
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value of the variable p: 

We note that the computation of gradients of integrals of the more 
complex form (26) using the sensitivity equations still requires just one 
forward integration, and the partial derivatives of time-averaged quantities 
are obtained simply as: 

As in the case of adjoint system considered in Section 2, here we have 
formulated the sensitivity equations for the case of a single parameter a 
and a single property p .  For the multiparametric case, Eqs. (35)-(38) and 
(40)-(43) have to be written separately for each parameter a. Also, for the 
case of multiple properties p ,  Eqs. (40)-(43) have to be written separately 
for each property. 

4. PARTIAL DERIVATIVES OF INITIAL SYSTEM 
CONDITIONS WITH RESPECT TO SYSTEM PARAMETERS 

Both the adjoint and the sensitivity equations make use of the partial 
derivatives of the initial particle positions and velocities with respect to 
the system parameters a: (see Eqs. ( 2 5 )  and (37), (38) respectively). In this 
section, we consider how these partial derivatives can be computed in the 
context of practical implementations of molecular dynamics computations. 

At the start of the molecular dynamics computation, the “input” 
macroscopic conditions of the system, energy E and density p, are translated 
into the microscopic system conditions using the interparticle potential pa- 
rameters 6 (e .g . ,  the Lennard-Jones parameters E and a). This defines the 
initial system state in terms of the vector of particle positions ro, velocities 
YO, and the reference box size L. 

4.1. Initialization Procedure for Molecular Dynamics 
Computations 

We start by examining in detail the procedure employed to obtain the 
initial vector of particle positions and velocities for molecular dynamics 
computations in the microcanonical ensemble. This procedure involves the 
following steps: 
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Given density p (kg/m3) and energy E (Jjmol): 

1. The reference box size L is directly related to the specified density p via: 

2 .  The particles are placed at given normalized positions r; E [0, 1I3(i = 
1 , .  . . , N )  corresponding to nodes on a grid defined on a unit cube. The 
initial vector of particle positions within a cube of side length L is, 
therefore, given by: 

The above initial particle positions in turn determine the initial potential 
energy for the system of N particles. We denote this potential energy as 
U(ro, L, 8) recognizing explicitly the fact that in our modified molecular 
dynamics framework, the potential depends directly on L as well as on 
the particle positions r and the potential parameters 19 (c f .  discussion in 
Section 1).  

3. The initial particle velocities vp are set to be proportional to given velocity 
vectors v ; . ~  Thus, we have: 

v;=[vT, ' d i = l ,  . . . ,  N (46) 

where E is a scalar scaling factor. The value of E is chosen so that the 
overall kinetic energy of the system of N particles is equal to: 

where N ,  is the number of molecules in the system' and N A  is 
Avogadro's number.6 Thus, Eq. (46) becomes: 

(48) 
EN,/NA - U(r0, L, 19) 

V i ( 0 )  = p 7  m,viTv; vT, Vi= 1, . . . ,  N 

4Typically, the vectors vf are generated using a (pseudo-)random number sequence, and are 
adjusted so that the overall momentum of the system is zero. In order to preserve the fully 
deterministic nature of the mapping P(q,29) it is essential to use the same set of v; for all 
molecular dynamics computations performed within a particular application. 

'Note that N ,  may be smaller than the number N of particles in the system. 
Since E is specified in J/mol, the quantity EN,,,/NA corresponds to the total energy of the N,,, 6 .  

molecules under consideration. 
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We now consider the partial derivatives of r? and vp with respect to the 
parameters a. We recall that the latter comprise both the input system 
properties q and the potential parameters 6. We deal with each one of 
these separately. 

4.2. Partial Derivatives with Respect to Input System Quantities 

In the case of the microcanonical ensemble, the input system quantities are 
p and E .  By differentiating (45) with respect to these, we obtain: 

aQ -=O, V i =  l , . . . , N  
d E  

Also, by differentiating (48) with respect to p and taking account of the fact 
that both ro and L are functions of p, we obtain: 

which, by virtue of (49) and (44) becomes: 

Finally, differentiating (48) with respect to E yields: 
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4.3. Partial Derivatives with Respect to Potential Parameters 

By differentiating (45) and (48) with respect to the potential parameters d, 
we obtain: 

dro 
- = O ,  V i =  1, . . . ,  N a9 (54) 

5. COMPUTATIONAL CONSIDERATIONS 

Both the adjoint system (20)-(22), and the sensitivity equations ( 3 9 ,  (36)  
and (40) allow the computation of the desired gradients dp/da.  The relative 
advantages and disadvantages of the two approaches have been discussed 
widely in the literature in the general context of the optimization of dynamic 
systems [4,5]. Here we examine the relative computational efficiency of the 
two approaches for the specific case of molecular dynamics. 

5.1. Size of ODE System 

For a system involving N interacting particles, the number, N A ,  of ODES 
in the adjoint system (20)-(22) is given by: 

NA = (6N + N,)Np ( 5 6 )  

while the number of sensitivity equations ( 3 9 ,  (36)  and (40) is given by: 

NS G (6N + N,)N, (57) 

where Np and N ,  denote the numbers of properties p and parameters Q 

respectively. 
From Eqs. ( 5 6 )  and (57), it is clear that the sensitivity system is more 

compact than the adjoint one (i.e.,  NS  < N A )  if there are fewer parameters 
a than properties of interest, p .  The reverse is true if N ,  > Np. Thus, in 



180 

general: 
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5.2. Evaluation of ODE Right Hand Sides 

Both the adjoint and the sensitivity equations involve exactly the same 
functions of the vectors r, v and a, namely: 

and all of these have to be computed at the current values of r and v 
whenever one wishes to evaluate the right hand sides of the ODES being 
integrated. 

5.2.1. Spatial Partial Derivatives of the Force Functions 

From Eqs. ( 5 )  and (23), the following formulae can be derived for the 
elements of matrix M(j3‘?: 

The second term on the right hand side above can be obtained by direct 
differentiation of the bond correction function AF?,’ (cf. Eq. (9) and 
examples in Section 6). On the other hand, the force 3; appearing above 
denotes the first term on the right hand side of Eq. (5) and its partial 
derivatives are given by: 

For j #  i :  
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For J =  i: 

181 

where it is understood that all partial derivatives of the potential UNB are 
computed at an interparticle distance of Rkktpt  as defined by Eq. (7) and the 
triple summation operator is defined as: 

Analogously to the proofs given for the generalized modified force 
function in part I of this paper [I], we can show that the following properties 
hold: 

Property I Invariance under integral shifts 

Property 11 Computation over a limited domain 

Property ZZZ Further reduction of the computational domain 
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d3X 
d ( X ,  1 - Y , Z )  = ( - l ) 6 ~ y ~ ( x l Y , z )  
%j %j 

83;  
. %j %j 
- ( X , Y , l - Z )  = (-l)6+x,Ylz) 

where S,! is the Kronecker delta: 

1 if y =y' 
0 otherwise 6,r = 

and similarly for the partial derivatives of 3; and F'f. 

Property ZV Relations between partial derivatives of F", FY, F z  

dF; d3X 
- ( X ,  Y , Z )  = L ( X ,  Y , Z )  
d X j  a y j  

83;  d3X 
- ( X ,  y ,  Z )  = 2 ( X ,  Y ,  Z )  
d X j  d Z j  

dF; d3X 
- ( X ,  y ,  Z )  = ( Z ,  x, y )  
d Z j  d X j  

(73) 

(75) 

As in the case of the force functions themselves, Properties 1-111 imply 
that the domain over which the matrices of force derivatives need to be 
evaluated can be limited to XE [0,0.5], Y E  [0,0.5], 2 E [0,0.5]. Property IV 
shows that the only partial derivatives that actually need to be evaluated 
are those of 3;. 
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5.2.2. Partial Derivatives of the Force Functions 
with Respect to Parameters a 

The partial derivatives dFi/da that appear in Eqs. (22) and (36)  may be 
obtained by differentiating (5) with respect to a: 

( Y  - k')[k(X - k )  + k'(Y - k' )  + k"(Z - k")]  XINB dL 
R& rk N dR d a  

-- 

( Z  - k") [k(X - k )  + k'( Y - k' )  + k"(Z - k")]  dUNB dL -- 
RZktku dR da 

We note that, unless a parameter il! is either L or a quantity related to it 
(e.g., density p), Eqs. ( 7 6 ) - ( 7 8 )  can be reduced to their last two terms, the 
other terms on the right hand sides being zero. 



184 J.  STEFANOVIC A N D  C. C. PANTELIDES 

5.2.3. Partial Derivatives of the Instantaneous System Properties 

The quantities dip/&, dp/& and dp lda  corresponding to the temperature 
and pressure functions (cf. Eqs. (1 l), (12)) are given by: 

= O  V i =  l l . . . l N  & 
dri 

= o  a(p, 
da 

dpp 2mivi 
avi 3L3 

- V i =  l l . . . l N  - -  - 

. .  

(79) 

Note that the term dL/da  in Eq. (84) is non-zero only if the parameter (x is 
either L itself or a quantity directly related to it (e.g., the system density p) .  

5.3. Matrix-vector Operations in ODE Right Hand Sides 

The evaluation of the right hand sides of the ODES for the two systems 
involve different matrix -matrix and matrix - vector operations. Bearing in 
mind that the multiplication of a nl  x n2 matrix by a n2 x n3 matrix requires 
n1 x n2 x n3 additions and multiplications, we can perform the computa- 
tional cost analysis presented in Table I. 

It is clear that the dominant cost terms are 9 N 2  and 9N,N2 additions- 
multiplications for the adjoint system and sensitivity equations respectively. 
Therefore, the sensitivity equations are at a relative disadvantage in this 
respect for problems involving many parameters a (i.e., N ,  >> 1). 
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TABLE I Additions/multiplications for evaluation of ODE right 
hand sides 

~~ 

Type of Cost of term No. of terms Total cost 
term (add+ multiply) computed (add+ multiply) 

Adjoint system 
M(J,i) by 9 N 2  9 N 2  
( ~ F ~ / & ) ~ A ;  3 N,N 3N,N 
Total 3N(3N+ N,)  

Sensitivity equations 
M(j+j,, 9 N , N ~  9N,N2 
(a(Plh3ri.n 3 NLJ 3N,N 
(aiplhi)vi ,u 3 N,N 3N,N 
Total 3NaN(3N+2) 

5.4. Other Considerations 

The integration of both adjoint and sensitivity equations requires knowledge 
of r(t) and v(t), t E [0, r f ] .  The sensitivity equations have the advantage of 
being integrated in the forward direction; consequently, their integration can 
be carried out together with that of the original Newtonian equations 
(1)-(4). On the other hand, as the integration of the adjoint system is carried 
out backwards in time, the original equations also have to be integrated 
backwards together with the adjoint equations, despite the fact that they 
have already been integrated in the forward direction (see Step 2 of the 
adjoint system solution algorithm outlined above). Alternatively, the solu- 
tion obtained during the forward integration could be stored so that it 
can be used by the backward adjoint integration, but this may result in 
rather large storage requirements (6NN, real numbers where N ,  is the 
number of integration steps). 

Moreover, as the values of the sensitivities can be sampled at any point in 
the trajectory and not just at the final time rf, the gradients of the averaged 
system (i.e., ensemble) properties can be obtained directly from that single 
forward integration (cf. Eq. (43)). In contrast, the adjoint system requires 
two backward integrations starting from tf and 9- 7 respectively (cf .  Fig. 1) 
to evaluate the gradients of the averaged properties. 

Overall, whether adjoints or sensitivities should be used for computa- 
tion of partial derivatives will depend on the characteristics of the specific 
application under consideration. For example, consider a standard mol- 
ecular dynamics computation in the microcanonical ensemble in which 
we specify values of the energy E and density p and calculate the bulk 
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temperature T and pressure P. In addition, we may wish to calculate various 
partial derivatives: 

Computation of partial derivatives with respect to input macroscopic 
properties Here we wish to compute the partial derivatives of T and P with 
respect to E and p. In this case, we have two system properties p =  {P, T )  
and two parameters (Y = {E,  p} ,  i.e., Np = N,. Hence, the sizes of the adjoints 
and the sensitivity systems are identical (cf. Eqs. (56), (57)). Therefore, the 
use of sensitivities may be preferable in view of their other advantages. 

Computation of partial derivatives with respect to force field parameters 
Suppose we require the partial derivatives of T with respect to several 
potential parameters. A simple Lennard- Jones force field describing the 
interactions of spherical particles involves only two parameters, a = { E ,  a};  
however, a more complex force field describing flexible molecules may 
involve a considerable number of parameters required to describe stretching, 
bending and torsional molecular motion, electrostatic interactions etc. In 
such cases, the use of adjoints may be preferable. 

6. APPLICATION: DYNAMICS OF SYSTEMS 
OF ETHANE MOLECULES 

As an illustration of the methodology presented in this paper, we now apply 
it to the dynamics of systems of flexible ethane molecules. 

6.1. Derivation of System Specific Quantities 

The non-bonded interactions are described by the Lennard - Jones 
potential: 

UNB(R, L)  = 4 k b ~  [ ( % ) 1 2  - (ig] 
where E and a are the energy and distance parameters respectively. The 
partial derivatives of UNB that need to be inserted in Eqs. (6)  and (60)-(63) 
are given by: 
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while Eqs. (76)-(78) involve the partial derivatives a2UNB/dR d a  which, in 
the case considered here, are given by: 

-- d2UNB - 1 4 4 k g a 6 j 7  - 4 -  [ (A)‘ - 1 ]  
dRdL L7 

We now turn to the terms in our methodology that are due to bonded 
interactions. We assume that these are characterized by the bond stretching 
potential of the form: 

k U s ( d )  = kb 5 (d  - do)2 

where kb is Boltzmann’s constant, kd is the stretching parameter, d is the 
distance between the two bonded particles, and do is the corresponding 
equilibrium bond length. Therefore, the force due to bond stretching exerted 
on a particle i by a particlej bonded to i is given by: 

where do is the distance between particles i and j .  The bonding correction 
function is given by the difference of Eq. (92) and the corresponding non- 
bonded force: 
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The partial derivatives of AF:lY appearing in Eqs. (60)-(63) are given by: 

-+(;)I2-  24kb~ ( $ 1  
d i  

Finally, Eqs. (76) - (78) require the partial derivatives of AF:,? with 
respect to the potential parameters which are given by: 

6.2. Numerical Experiments 

We simulate a bulk ethane fluid using the potential parameter values shown 
in Table I1 [6]. The simulation involves 108 ethane molecules at a density of 
360 kg/m3 and energy of 1000 J/mol. Here the simulation time horizon tf is 
22ps; the time 7 over which the averaging is performed is taken as tf/2. 
The force was computed using the MOD-3 framework (cf. Section 5.1 of 
part I of this paper [l]), according to which the modified force function 
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TABLE I1 Potential parameter values and results of base case 
simulation for bulk ethane 

Simulation of ethanefluid ( N  = 216) 

kd  (K/A2) d d A )  E(K) .(A) 
96500 1.54 100.6 3.825 
E (J/mol) P (kg/m3) T(K ) P(MPa) 
1000 3 60 348.8 42.5 

in the y coordinate direction is given by: 

qx, Y , Z )  E Iw3\"3' 

The results presented in part I of this paper indicate that this 
a sufficiently accurate approximation to the "true" (MOD-m) 

(100) 

provides 
modified 

function without entailing excessive computation. An Adams - Bashforth 
integration method [7] of order 3 with a fixed time step of 2 fs was used for 
the solution of the equations of motion. The energy of the system was found 
to be conserved within f 0.5%. 

The bottom row of Table I1 presents the results of the base case simula- 
tion. Table 111 presents the partial derivatives of temperature and pressure 
with respect to the input thermodynamic quantities, E and p, and compares 
these with the values obtained using the first-order finite difference formula: 

dT 
aa 6 X a  

T(cY( 1 + 6)) - T ( a )  
- N  - 

where the finite difference perturbation is taken as a fraction 6 of a. 
Tables IV and V present the partial derivatives of temperature and 

pressure with respect to the potential parameters 6 = {kd ,  do, E, (T}, and com- 
pare these with the corresponding finite difference values. 

TABLE 111 Partial derivatives of temperature and pressure with respect to input system 
quantities for bulk ethane 

aT/aE aTpP appE @lap 
( K  m o u a  ( K  m /moo (MPa m o l / a  (MPa m3/mo4 

Finite 
Differences: 

6= 1 x 3.370 x l op2  2.230 x 10V2 1.260 x 1.200 x 
6= 1 x 3.400 x 2.230 x 1.260 x 10K2 1.190 x 
6= 1 x 10K5 4.000 x 10K2 2.250 x 1.300 x 1.190 x 10K2 
Adjoints: 3.371 x 2.245 x 10W2 1.262 x lo-' 1.190 x 10W2 
Sensitivities: 3.371 x 10V2 2.245 x lo-' 1.262 x 1.190 x 10K2 

6 =  1 x lo -*  3.370 x 2.160 x 10V2 1.260 x 1.270 x 
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TABLE IV Bulk ethane: partial derivatives of temperature with respect to potential 
Darameters 

Finite 
Differences: 
6 =  1 x lo-’ -2.135 x -2.216 x 10’ 3.152 2.051 x 10’ 
6 = 1  x 10K3 -2.073 x l o r 3  -2.195 x 10’ 3.152 2.168 x lo2 
6= 1 x -2.073 x l o r 3  -2.208 x 10’ 3.151 2.180 x 10’ 
6 = i  x l o r 5  0.000 - 1.948 x 10’ 3.181 2.196 x 10’ 
Adjoints: -2.130 x lo-’ -2.196 x 10’ 3.151 2.175 x 10’ 
Sensitivities: -2.130 x I O W 3  -2.196 x 10’ 3.151 2.175 x 10’ 

TABLE V Bulk ethane: partial derivatives of pressure with respect to potential parameters 

aP/akp aP/adg aPpE apjac 
( M P a A  /K) (MPaIA (MPa/K)  (MPaI.4 1 

Finite 
Differences: 
6 = 1  x -4.759 x l o r 3  -1.281 x 10’ 1.202 x lo - ’  1.044 x 10’ 
6 = 1  x l o r 3  -4.777 x - 1.249 x 10’ 1.184 x l o - ’  9.423 x 10’ 
6=1  x -4.767 x -1.240 x 10‘ 1.183 x l o - ’  9.323 x 10’ 
6 =  1 x -4.145 x - 1.234 x 10’ 1.193 x lo - ’  9.333 x 10’ 
Adjoints: -4.769 x -1.242 x 10’ 1.183 x l o - ’  9.353 x 10’ 
Sensitivities: -4.769 x l ow3  - 1.242 x 10’ 1.183 x lo-’  9.353 x 10’ 

The main observations arising from the results of Tables 111-V are as 
follows: 

0 Both the adjoint and the sensitivity formulations predict the same values 
of all partial derivatives within (at least) the four significant digits shown 
here. 

0 The above values are generally similar to those obtained from finite 
difference approximations. Moreover, small perturbations applied to the 
values of the inputs Q of this system in the context of finite difference 
approximations result in correspondingly small changes in the values 
of outputs, p .  There is no evidence of “chaotic” behavior in the mapping 
p ( a )  despite the relatively high density (and, consequently, high frequency 
of interparticle “collisions”) in the system being considered here. 

0 As is usually the case with complex functions, the selection of an ap- 
propriate size for the accurate determination of partial derivatives via 
finite difference perturbations appears to be problematic. The optimal 
relative perturbation (i .e.,  the one producing values nearest to the “exact” 
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ones computed by the adjoint and sensitivity formulations) is generally 
of the order of 10-3-10-4, but varies from one partial derivative to 
another. On the other hand, a relative perturbation of l o p 5  results in 
severe loss of accuracy due to the numerical error of integration in- 
terfering with the effects of the small perturbation. 

Overall, the results presented in this section provide some evidence of the 
advantages of variational techniques ( i .e . ,  adjoints or sensitivities) for the 
computation of the partial derivatives of molecular dynamics mappings over 
simpler approaches such as those based on finite differences. 

7. CONCLUDING REMARKS 

This paper has presented two general methodologies for the computation 
of partial derivatives @ / d a  of mappings of the form p=p(a:) defined by 
molecular dynamics computations. These involve solving either the adjoint 
or the sensitivity equations of the classical Newtonian equations of motion. 
In general, both formulations require the computation of the same functions 
of the vectors r, v and a. Amongst these is the matrix of spatial derivatives 
of the force functions. Hence, for these approaches to be directly applicable, 
the potential must be a continuous and twice-differentiable function of 
the interparticle distance r .  Just like the modified force function itself, the 
spatial derivatives of the force function need to be evaluated in the limited 
domain ( X ,  Y,  2) E [0, 0.513. We will exploit this property when we consider 
efficient ways of computing the force and its spatial derivatives in part I11 
of this work. 

In general terms, the adjoint formulation should be used if there are many 
more parameters a: of interest than properties p .  Otherwise, the sensitivity 
formulation is preferable in view of its relative simplicity. Leaving aside 
efficiency considerations, both approaches lead to the same values for the 
partial derivatives. Moreover, as our numerical results illustrate, these 
values are more reliable than those obtained by finite difference perturba- 
tions even when the latter are applied to the continuous and differentiable 
molecular dynamics mappings defined by our modified force functions. 

Although our examples have considered only simple properties such as 
temperature and pressure, the approach presented is completely general and 
can be applied to obtain the partial derivative of any property computed 
by molecular dynamics with respect to any potential parameter and/or 
input condition. 
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